Resources Contact Us Home
Browse by: INVENTOR PATENT HOLDER PATENT NUMBER DATE
 
 
Winding machine stopping method
RE37976 Winding machine stopping method
Patent Drawings:Drawing: RE37976-2    Drawing: RE37976-3    Drawing: RE37976-4    Drawing: RE37976-5    Drawing: RE37976-6    
« 1 »

(5 images)

Inventor: Hiramatsu
Date Issued: February 4, 2003
Application: 09/454,171
Filed: December 1, 1999
Inventors: Hiramatsu; Kazuhiko (Kitakyushu, JP)
Assignee: Kabushiki Kaisha Yaskawa Denki (Fukuoka, JP)
Primary Examiner: Matecki; Katherine A.
Assistant Examiner:
Attorney Or Agent: Sughrue Mion, PLLC
U.S. Class: 252/375; 254/274
Field Of Search: 254/274; 254/362; 254/375
International Class:
U.S Patent Documents: 4087078; 4276498; 5398911
Foreign Patent Documents: 55-52894; 55-93798; 59-124690; 62-239898
Other References: D Ernst, D. Strole, Industrieelektronik, "Hochwertiger Vierquadrantenantrieb mit Pulsuinrichter," pp. 208-210 (1973) (with translation)(complete date unavailable)..
Siemens/Katalog DA 66.2 "Spannungszwischenkreis-Umrichter Simovert P fur drehzahlveranderbare Drehstromantriebe" (1991/92) (with translation) (complete date unavailable)..









Abstract: A method of stopping of a winding machine that hoists and lowers an object prevents abrasion of the electromagnetic brake and the descent of load. The winding machine, which winches a load up or down in response to a torque command TREF to the electric motor M produced by the speed controller ASR in accordance with the a speed command N.sub.REF generated by the speed command generation circuit NRC, operates at the stopping of the machine to cease the motor control if the motor speed N.sub.FB is zero after the torque command to the motor M is brought to zero for a predetermined length of time following the issuance of a brake command to the electromagnetic brake which is coupled directly to the motor M.
Claim: I claim:

1. A method of stopping of a winding machine which operates to winch a load up or down in response to a torque command for controlling an electric motor where said torque command isproduced by a speed controller in accordance with a speed command generated by a speed command generation circuit, said method comprising the steps of: decreasing the speed command for said electric motor to zero for a predetermined length of time whenstopping the electric motor; detecting a motor speed N.sub.FB of said electric motor using a speed detector; braking said motor by issuing a brake command to an electromagnetic brake coupled to said electric motor after said motor speed N.sub.FB ofsaid electric motor has reached zero and a second predetermined length of time following said motor speed reaching zero has expired; reducing said torque command to zero following engagement period of said electromagnetic brake; detecting the electricmotor speed after said torque command is zero; and turning off a power supply for the electric motor if the electric motor speed N.sub.FB detected by the speed detector is zero following said torque command reaching zero.

2. A method of stopping of a winding machine according to claim 1, wherein in said braking step, a timer is operated to measure said second predetermined time period after the motor speed has reached zero, and said brake command is issued by abrake command generation circuit to said electromagnetic brake when a counter value of said timer is greater than a prescribed value to activate said electromagnetic brake.

3. A method of stopping a winding machine wherein the finding machine includes an electric motor coupled to an ectromagnetic brake, a speed command generation circuit for generating a speed command, a speed detector for detecting a speed of saidelectric motor and outputting a tested speed, a speed controller circuit for receiving a difference between the speed command and the detected speed of the electric motor and generating a torque command means for driving the electric motor in accordancewith said torque command, and a brake command circuit for driving said electromagnetic brake in accordance with a stop command and said detected speed, the method comprising the steps of: issuing said stop command to the brake command circuit and thespeed command generation circuit; said speed command generation circuit outputting a speed reduction to zero command to the speed controller circuit in response to receiving the stop command to reduce a speed of said electric motor to zero; said brakecommand circuit, in response to receiving said stop command and receiving a detected speed from the speed detecting circuit and determining that said detected speed is zero, executing a first predetermined delay period and issuing a brake command to saidelectromagnetic brake at a completion of said predetermined delay period to apply a braking force to the electric motor; said means for driving the electric motor reducing a torque of said electric motor to zero following a second predetermined delayperiod after issuance of said brake command which allows for activation of said electromagnetic brake; and said means for driving the electric motor releasing control of said electric motor by ceasing a current applied thereto after completion ofreducing said torque of said motor to zero and expiration of a third predetermined time period when said detected motor speed remains at zero indicating that said electromagnetic brake is functionally engaged. .Iadd.

4. A method of controlling an electric motor, comprising: decreasing a speed command for the electric motor to zero for a predetermined length of time when stopping the electric motor; detecting a motor speed of said electric motor using aspeed detector: braking said motor by issuing a brake command to an electromagnetic brake coupled to said electric motor after said motor speed of said electric motor has reached zero and a second predetermined length of time following said motor speedreaching zero bas expired; reducing said torque command, which controls said electric motor, to zero following engagement period of said electromagnetic brake; detecting the electric motor speed after said torque command is zero: and turning off apower supply for the electric motor if the electric motor speed detected by the speed detector is zero following said torque command reaching zero..Iaddend..Iadd.

5. The method according to claim 4, wherein in said braking operation, a timer is operated to measure said second predetermined time period after the motor speed has reached zero, and said brake command is issued by a brake command generationcircuit to said electromagnetic brake when a counter value of said timer is greater than a prescribed value to activate said electromagnetic brake..Iaddend..Iadd.

6. A method of controlling an electric motor, comprising: issuing a stop command to a brake command circuit and a speed command generation circuit, wherein said speed command generation circuit outputs a speed reduction to zero command to aspeed controller circuit in response to receiving the stop command to reduce a speed of said electric motor to zero; wherein said brake command circuit, in response to receiving said stop command and a detected speed of said electric motor from a speeddetecting circuit and determining that said detected speed is zero, executes a first predetermined delay period and issues a brake command to an electromagnetic brake at a completion of said predetermined delay period to apply a braking force to theelectric motor; reducing a torque of said electric motor to zero following a second predetermined delay period after issuance of said brake command which allows for activation of said electromagnetic brake: and releasing control of said electric motorby ceasing a current applied thereto after completion of reducing said torque of said motor to zero and expiration of a third predetermined time period when said detected motor speed remains at zero indicating that said electromagnetic brake isfunctionally engaged..Iaddend.
Description: BACKGROUND OF THE INVENTION

The present invention relates to a method of stopping a winding machine which is used for winching a crane rope up and down.

Winding machines, which use electric motors for driving and electromagnetic brakes for stopping, manage the critical timing of the operation of the motor and electromagnetic brake during the transition from working to stopping. Far example, whenan operator wishes to winch down a load with a crane rope and stop the crane when the load reaches a certain height, if the activation of the electromagnetic brake comes after the motor stops, the crane rope will temporarily be in a no-torque state,resulting in the dangerous descent of the load.

To deal with this matter, Unexamined Japanese Patent publication No. Sho 59-124690 discloses a method of controlling the timing of the operation of the motor and electromagnetic brake in which the electromagnetic brake is activated immediatelybefore the motor stops, thereby halting the descent of load. FIG. 1 is a block diagram of the control circuit of this prior art, and FIG. 2 is the timing chart at stopping.

In the figure, a winch induction motor M.sub.1 has its output shaft coupled at one end to a drum of an electromagnetic brake MB and at another end to a winch drum D through a reduction gear G. Connected between a primary winding of the inductionmotor M.sub.1 and the power source is a variable-voltage, variable-frequency inverter I1. which is also connected to the electromagnetic brake MB by way of a brake controller BC.

The operation of the system will be explained with reference to FIG. 2. When a stop command SR is issued to the inverter h at time t.sub.7, the speed command N.sub.REF to the induction motor MI decreases, and the motor speed N.sub.FB fallsaccordingly. When the motor speed N.sub.FB has fallen to a prescribed level (immediately before the stop), a brake command BR is issued to the electromagnetic brake MB at time t.sub.8 to activate it.

In the above prior art method of stopping a winding machine, the electromagnetic brake is activated during the rotation of the motor, and therefore has the problem of prematurely wearing the electromagnetic brake. Another problem is that thecontrol ceases at time is when the speed command N.sub.REF reaches zero, causing the current command to become zero, even if the electromagnetic brake is not activated, in which case the descent of the load will occur.

SUMMARY OF THE INVENTION

Accordingly, an object of the present invention is to prevent abrasion of the electromagnetic brake and the descent of the load.

In order to achieve the above objective, the inventive method of stopping a winding machine which operates to winch a load up or down in response to a torque command applied to an electric motor and produced by a speed controller in accordancewith a speed command generated by a speed command generation circuit, the method comprising the steps of: decreasing the speed command to the motor to zero for a predetermined length of time at the stopping of the motor, thereby the torque command to themotor is controlled to zero; braking the motor by issuing a brake command to an electromagnetic brake which is coupled directly to the motor after the motor speed N.sub.FB detected by the speed detector is zero and turning off a power supply to the motorif the motor speed N.sub.FB detected by the speed detector is zero.

In the inventive method of stopping a winding machine, if the motor does not rotate when the torque command is reduced to zero for a predetermined length of time following the activation of the electromagnetic brake after the motor has stoppedcompletely based on the operation of the above-mentioned means, it can be judged that the electromagnetic brake is producing a torque sufficient to withstand the load at that time, and therefore the descent of load can be prevented even in the absence ofthe motor control. By activating the electromagnetic brake during the stoppage of the motor, the brake will incur abrasion and the descent of load is prevented.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a schematic diagram showing the arrangement of a conventional winding machine;

FIG. 2 is a timing chart used to explain the operation at the stopping of the winding machine;

FIG. 3 is a block diagram showing the principal arrangement of an embodiment of this invention of a method of stopping of a winding machine;

FIG. 4 is a timing chart used to explain the operation of this embodiment; and

FIG. 5 is a flowchart of the control sequence for the brake command generation circuit based on this invention.

DETAILED DESCRIPTION OF THE INVENTION

An embodiment of this invention will be explained with reference to the drawings.

In FIG. 3, reference symbol M denotes an induction motor. A difference in the speed N.sub.FB Of the induction motor M detected by a speed detector PG, such as a pulse tachogenerator, from a speed command N.sub.REF produced by a speed commandgeneration circuit NRC is fed to a speed controller ASR. A torque command limit circuit TLIM, which limits a torque command value, produces a torque command TREF which is fed to a vector-control inverter INV, for driving the induction motor M. A stopcommand SR and the motor speed N.sub.FB detected by the speed detector PG, are fed to a brake command generation circuit BRC which issues a brake command BR to an electromagnetic brake B.

The operation of the circuit shown in FIG. 3 will be explained in connection with the timing chart of FIG. 4.

During the operation of the induction motor M, when a stop command SR shown in FIG. 3 is issued to the speed command generation circuit NRC at time t.sub.1 (step 100 in FIG. 5), the speed command generation circuit NRC produces a decreasing speedcommand N.sub.REF, and the motor speed N.sub.FB falls accordingly. After the motor speed N.sub.FB has reached zero at time t.sub.2, the brake command generation circuit BRC issues a brake command BR to the electromagnetic brake B at time t.sub.3, and itoperates accordingly. Since the electromagnetic brake B operates in the state of zero motor speed N.sub.FB , it does not suffer any abrasion. A time period from t.sub.3 to t.sub.4 allows for the delay in operation of the electromagnetic brake B. Torquecommand limit circuit TLIM reduces the torque command TREF to zero within a time period from t, to t.sub.5. After time t.sub.4, if the motor speed N.sub.FB remains at zero at a zero torque command, indicative of the generation by the electromagneticbrake B of a braking torque which withstands the load, the descent of the load will not occur even though the the power supply to the induction motor has been turned off. Accordingly, the the power supply to the induction motor can be stopped at timet.sub.5.

FIG. 5 shows the control sequence of braking implemented by the brake command generation circuit BRC. In the figure, when the circuit BRC receives a stop command SR (step 100), it monitors the motor speed N.sub.FB (step 110), and it operates atimer to measure the time after the motor speed N.sub.FB has reached zero (step 120). When the timer value is greater than the value of t.sub.3 -t.sub.2 (step 130), the brake command generation circuit BRC issues a brake command BR to theelectromagnetic brake B to thereby activate it (step 140).

The present invention can be applied to the field of winding machines used for overhead traveling cranes in various plants and storage yards.

* * * * *
 
 
  Recently Added Patents
Pyrrolidine-1,2-dicarboxamide derivatives
Cooling method and device for cooling a medium-voltage electrical installation in a protective sheath
Virtual links in a routed ethernet mesh network
Electronic device
Implementing state-of-the-art gate transistor, sidewall profile/angle control by tuning gate etch process recipe parameters
Radiation-emitting semiconductor chip and method for producing a radiation-emitting semiconductor chip
Voltage regulator with improved voltage regulator response and reduced voltage drop
  Randomly Featured Patents
Container for washer or autoclave
Non-toxic biofilm inhibitor
Finger ring or similar article
Container for fluid, powder or granulated products
Wavelength-tunable distributed-feedback semiconductor laser device
Contoured grip for exercising the hand
Apparatus and method for determining the level in a coke drum
Compounds for organic electronic devices
Avatars in social interactive television
Method and apparatus for charge control of a portable terminal having a solar battery