Resources Contact Us Home
Browse by: INVENTOR PATENT HOLDER PATENT NUMBER DATE
 
 
Imaging glyphosate in plant tissue
8211639 Imaging glyphosate in plant tissue
Patent Drawings:Drawing: 8211639-10    Drawing: 8211639-11    Drawing: 8211639-12    Drawing: 8211639-2    Drawing: 8211639-3    Drawing: 8211639-4    Drawing: 8211639-5    Drawing: 8211639-6    Drawing: 8211639-7    Drawing: 8211639-8    
« 1 2 »

(11 images)

Inventor: Jurado, et al.
Date Issued: July 3, 2012
Application: 13/255,014
Filed: March 9, 2010
Inventors: Jurado; Luis A. (St. Louis, MO)
Ubach; Maria Cristina (Chesterfield, MO)
Duncan; David (St. Charles, MO)
Assignee: Monsanto Technology LLC (St. Louis, MO)
Primary Examiner: Gebreyesus; Kagnew H
Assistant Examiner:
Attorney Or Agent: Davis; James E.Schaper; Joseph A.Harness, Dickey & Pierce, P.L.C.
U.S. Class: 435/6.1; 800/300
Field Of Search:
International Class: C12Q 1/68; A01H 15/00
U.S Patent Documents:
Foreign Patent Documents: WO 92/00377; WO 2004/113555; WO 2010/104861
Other References: Clegg et al (Development of Enzyme-Linked Immunosorbent Assay for the Detection of Glyphosate (J. Agri. Food Chem. 1999, 47, 5031-5037). citedby examiner.
Shao, Novel cyanobacterial biosensor for detection of herbicides Applied and Environmental Microbiology (2002), 68(10), 5026-5033. cited by examiner.
Ainscow et al., Dynamic imaging of free cytosolic ATP concentration during fuel sensing by rat hypothalamic neurones: evidence for ATP-independent control of ATP-sensitive K.sup.+channels, Journal of Physiology, 544.3, pp. 429-445, 2002. cited byother.
Borisjuk et al., Spatial analysis of plant metabolism: Sucrose imaging within Vicia faba cotyledons reveals specific developmental patterns, The Plant Journal, 29(4), pp. 521-530, 2002. cited by other.
Brecke et al., Effect of Glyphosate on Intact Bean Plants (Phaseolus vulgaris L.) and Isolated Cells, Plant Physiol., 66, pp. 656-659, 1980. cited by other.
Gonzalez-Carranza et al., Temporal and Spatial Expression of a Polygalacturonase during Leaf and Flower Abscission in Oilseed Rape and Arabidopsis, Plant Physiology, 128, pp. 534-543, Feb. 2002. cited by other.
Hay et al., A Bioluminescent Whole-Cell Reporter for Detection of 2, 4-Dichlorophenoxyacetic Acid and 2,4-Dichlorophenol in Soil, Applied and Environmental Microbiology, pp. 4589-4594, Oct. 2000. cited by other.
Hetherington et al., The absorption, translocation and distribution of the herbicide glyphosate in maize expressing the CP-4 transgene, Journal of Experimental Botany, 50(339), pp. 1567-1576, Oct. 1999. cited by other.
Hollis et al., Design and Application of a Biosensor for Monitoring Toxicity of Compounds to Eukaryotes, Applied and Environmental Microbiology, pp. 1676-1679, Apr. 2000. cited by other.
Idahl et al., Measurements of Serum Glucose Using the Luciferin/Luciferase System and a Liquid Scintillation Spectrometer, Analytical Biochemistry, 155, pp. 177-181, 1986. cited by other.
Lager et al., Conversion of a Putative Agrobacterium Sugar-binding Protein into a FRET Sensor with High Selectivity for Sucrose, The Journal of Biological Chemistry, 281(41), pp. 30875-30883, Oct. 13, 2006. cited by other.
Mourad et al., Measurement of Oxidized Glutathione by Enzymatic Recycling Coupled to Bioluminescent Detection, Analytical Biochemistry 283, pp. 146-152, 2000. cited by other.
Mueller-Klieser et al., Geographical mapping of metabolites in biological tissue with quantitative bioluminescence and single photon imaging, Histochemical Journal, 25, pp. 407-420, 1993. cited by other.
Oldham et al., Three-dimensional imaging of xenograft tumors using optical computed and emission tomography, Med Phys., 33(9), pp. 3193-3202, Sep. 2006. cited by other.
Sattler et al., A bioluminescence technique for quantitative and structure-associated imaging of pyruvate, Laboratory Investigation, 87, pp. 84-92, 2007. cited by other.
Servaites et al., Glyphosate Effects on Carbon Assimilation, Ribulose Bisphosphate Carboxylase Activity, and Metabolite Levels in Sugar Beet Leaves, Plant Physiol, (1987) 85, pp. 370-374. cited by other.
Shao et al., Novel Cyanobacterial Biosensor for Detection of Herbicides, Applied and Environmental Microbiology, 68(10), pp. 5026-5033, Oct., 2002. cited by other.
Smulski et al., Combined, Functional Genomic-Biochemical Approach to Intermediary Metabolism: Interaction of Acivicin, a Glutamine Amidotransferase Inhibitor, with Escherichia coli K-12, Journal of Bacteriology, pp. 3353-3364, Jun. 2001. cited byother.









Abstract: Methods and compositions are provided for spatial imaging and quantifying glyphosate in plant tissue. Glyphosate oxidoreductase is coupled to a cycling flavin mononucleotide-oxidoreductase-luciferase system. The resulting bioluminescence is proportional to the amount of glyphosate, allowing glyphosate to be observed within plant tissue and quantified.
Claim: What is claimed is:

1. A method for detecting glyphosate in plant tissue expressing glyphosate oxidoreductase (GOX) comprising: contacting the plant tissue with an enzyme cocktail, the enzymecocktail comprising oxidized nicotinamide adenine dinucleotide phosphate (NADP.sup.+), flavin mononucleotide (FMN), flavin oxidoreductase, a long-chain fatty aldehyde, and luciferase; and detecting light emission from the plant tissue.

2. The method of claim 1, wherein cellular enzymes in the plant tissue are inactivated by heating prior to the contacting.

3. The method of claim 1, wherein reduced nucleotides in the plant tissue are selectively removed by acid treatment prior to the contacting, the acid treatment comprising treating the plant tissue with acid and neutralizing the acid.

4. The method of claim 3, wherein the acid treatment comprises: treating the plant tissue with HCl and ascorbic acid; adding additional HCl to the plant tissue; and neutralizing the plant tissue with NaOH and K.sub.2HPO.sub.4.

5. The method of claim 1, wherein detecting comprises measuring light emission during a discrete time interval.

6. The method of claim 1, wherein detecting light emission from the plant tissue comprises recording an image of the light emitted from the plant tissue.

7. The method of claim 1, further comprising comparing the light emitted from the plant tissue to the light emitted from at least one volume comprising a known amount of glyphosate, enzyme cocktail, and glyphosate oxidoreductase (GOX) toquantify the amount of glyphosate in the plant tissue.

8. A method for detecting glyphosate in a sample comprising: contacting the sample with an enzyme cocktail, the enzyme cocktail comprising oxidized nicotinamide adenine dinucleotide phosphate (NADP.sup.+), glyphosate oxidoreductase (GOX),flavin mononucleotide (FMN), flavin oxidoreductase, a long-chain fatty aldehyde, and luciferase; and detecting light emission from the sample.

9. The method of claim 8, wherein the sample comprises a microorganism.

10. The method of claim 8, wherein the sample comprises water or soil.

11. The method of claim 8, wherein the sample comprises plant tissue.

12. The method of claim 8, wherein cellular enzymes in the sample are inactivated by heating prior to the contacting.

13. The method of claim 8, wherein reduced nucleotides in the sample are selectively removed by acid treatment prior to the contacting, the acid treatment comprising treating the sample with acid and neutralizing the acid.

14. The method of claim 13, wherein the acid treatment comprises: treating the sample with HCl and ascorbic acid; adding additional HCl to the sample; and neutralizing the sample with NaOH and K.sub.2HPO.sub.4.

15. The method of claim 8, wherein detecting comprises measuring light emission during a discrete time interval.

16. The method of claim 8, wherein detecting light emission from the sample comprises recording an image of the light emitted from the sample.

17. The method of claim 8, further comprising comparing the light emitted from the sample to the light emitted from at least one volume comprising a known amount of glyphosate and the enzyme cocktail.

18. A kit for quantifying glyphosate in plant tissue comprising: oxidized nicotinamide adenine dinucleotide phosphate (NADP.sup.+); glyphosate oxidoreductase (GOX); flavin mononucleotide (FMN); flavin oxidoreductase; a long-chain fattyaldehyde; and luciferase.

19. The kit of claim 18, further comprising glyphosate.

20. The kit of claim 18, wherein the glyphosate oxidoreductase (GOX) is packaged separately from the oxidized nicotinamide adenine dinucleotide phosphate (NADP.sup.+), flavin mononucleotide (FMN), flavin oxidoreductase, a long-chain fattyaldehyde, and luciferase.
Description: INTRODUCTION

The compound N-(phosphonomethyl)glycine, commonly referred to as glyphosate, is a foliar applied, broad spectrum, post-emergence herbicide used for controlling annual and perennial grasses as well as dicotyledonous plants. Advantageous featuresof glyphosate include rapid soil inactivation and degradation with low toxicity to non-plant organisms. A mode of action of glyphosate includes inhibition of 5-enolpyruvyl shikimate 3-phosphate synthase (EPSP synthase), a key enzyme in the shikimatepathway, which is required for the biosynthesis of aromatic compounds including aromatic amino acids, vitamins, plant growth substances, and lignin. In particular, inhibition of EPSP synthase by glyphosate prevents the conversion of phosphoenolpyruvicacid and 3-phosphoshikimic acid to 5-enolpyruvyl-3-phosphoshikimic acid.

Glyphosate's herbicidal activity is generally nonselective; however, this may be overcome by genetically selecting and/or genetically engineering a plant to increase its resistance to the herbicide. A genetically selected or engineered plant ofinterest may be cultivated in the presence of glyphosate while growth of competitive plants is suppressed by the herbicide. Herbicide-tolerant plants may also reduce the need for tillage to control undesired plants, thereby effectively reducing soilerosion. Glyphosate-tolerant plants may be produced by modifying the plant DNA to produce or increase the activity of an EPSP synthase that is glyphosate tolerant. Alternatively, expressing genes capable of glyphosate degradation can provide a means ofconferring glyphosate tolerance to plants or can augment the tolerance of transgenic plants already expressing a glyphosate tolerant EPSP synthase, depending upon the physiological effects of the degradation products.

Glyphosate metabolism and breakdown may generate the compound aminomethylphosphonate (AMPA). Breakdown of glyphosate may be accomplished by the plant or by microbes on the leaf surface to which glyphosate is applied. In some cases, AMPA may beless phytotoxic as compared to glyphosate.

The enzyme glyphosate oxidoreductase (GOX) catalyzes the cleavage of the C--N bond of glyphosate yielding aminomethylphosphonate (AMPA) and glyoxylate as the reaction products. Under aerobic conditions, oxygen can be utilized as a co-substratefor the reaction. Other electron carriers such as phenazine methosulfate and ubiquinone may stimulate the reaction under aerobic conditions. In the absence of oxygen, these compounds can act as electron acceptors. Glyphosate oxidoreductase andexpression thereof is described in U.S. Pat. Nos. RE38,825 to Barry et al.; U.S. Pat. No. 6,849,430 to Carson et al.; U.S. Pat. No. 5,463,175 to Barry et al.; and U.S. Pat. No. 5,776,760 to Barry et al.

Various methods may be used to assay the activity of GOX, as described in U.S. Pat. No. RE38,825 to Barry et al. In one method, the enzymatic reaction may be assayed by oxygen uptake using an oxygen electrode. In another method, reaction of asample containing glyphosate with 2,4-dinitrophenylhydrazine can form glyoxylate-2,4-dinitrophenylhydrazone, where the amount of this product is determined using HPLC analysis. In yet another method, [3-.sup.14C]-glyphosate may be used as a substrateand the radioactive AMPA produced by the enzyme separated from the substrate using HPLC with an ion-exchange column. The radioactive AMPA is a measure of the extent of the glyphosate oxidoreductase reaction. These methods, however, do not detect orquantitate glyphosate or enzymatic reactions linked to glyphosate in situ.

SUMMARY

The present invention provides compositions and methods for imaging and measuring the distribution of glyphosate in plant tissue.

In some embodiments, the present disclosure relates to a method for imaging and quantifying glyphosate in plant tissue expressing glyphosate oxidoreductase (GOX). The method includes contacting plant tissue with an enzyme cocktail, the enzymecocktail comprising oxidized nicotinamide adenine dinucleotide phosphate (NADP+), flavin mononucleotide (FMN), flavin oxidoreductase, a long-chain fatty aldehyde, and luciferase. The method also includes measuring light emission from the plant tissue,wherein light emission is proportional to glyphosate in the plant tissue.

In some embodiments, the present disclosure relates to a method for imaging and quantifying glyphosate in plant tissue. Plant tissue is contacted with an enzyme cocktail, the enzyme cocktail comprising oxidized nicotinamide adenine dinucleotidephosphate (NADP+), glyphosate oxidoreductase (GOX), flavin mononucleotide (FMN), flavin oxidoreductase, a long-chain fatty aldehyde, and luciferase. Light emission from the plant tissue is measured, wherein light emission is proportional to glyphosatein the plant tissue.

The present methods may include various additional features. For example, cellular enzymes in the plant tissue may be inactivated by heating prior to the contacting. Reduced nucleotides in the plant tissue may be selectively removed by acidtreatment prior to the contacting, the acid treatment comprising treating the plant tissue with acid and neutralizing the acid. The acid treatment may include treating the plant tissue with HCl and ascorbic acid, adding additional HCl to the planttissue, and neutralizing the plant tissue with NaOH and K.sub.2HPO.sub.4. Measuring light emission from the plant tissue may further comprise measuring light emission throughout a discrete time interval. Measuring light emission from the plant tissuemay also further comprise recording an image of the light emitted from the plant tissue.

The present methods may be used to compare light emission from various plant tissue samples, including those from the same individual plant, same species, different species, and/or genetically modified or non-modified plants. The methods mayalso be used to visualize glyphosate in microorganisms, fungi, or isolated cell organelles. The methods may also include comparison with various controls, including comparing light emitted from the plant tissue to light emitted from at least one knownamount of glyphosate mixed with the enzyme cocktail.

In some embodiments, the present disclosure relates to a kit for quantifying glyphosate in plant tissue. The kit includes oxidized nicotinamide adenine dinucleotide phosphate (NADP+); glyphosate oxidoreductase (GOX); flavin mononucleotide(FMN); flavin oxidoreductase; a long-chain fatty aldehyde; and luciferase. The kit may further include glyphosate which may be used as a control. In some cases, the glyphosate oxidoreductase (GOX) is packaged separately from the other components. Forexample, this allows the other components to be used with plant tissue expressing glyphosate oxidoreductase (GOX) without the addition of exogenous glyphosate oxidoreductase (GOX).

To further understand the dynamics of glyphosate and plant biology, the present disclosure provides advantages for assaying glyphosate in vivo and allows observation and quantitation of the distribution of glyphosate and enzymes linked toglyphosate within plant tissue.

"A" and "an" as used herein indicate "at least one" of the item is present; a plurality of such items may be present, when possible. "About" when applied to values indicates that the calculation or the measurement allows some slight imprecisionin the value (with some approach to exactness in the value; approximately or reasonably close to the value; nearly). If, for some reason, the imprecision provided by "about" is not otherwise understood in the art with this ordinary meaning, then "about"as used herein indicates at least variations that may arise from ordinary methods of measuring or using such parameters. In addition, disclosure of ranges includes disclosure of all distinct values and further divided ranges within the entire range.

DRAWINGS

Certain aspects of the present invention will be more fully understood from the detailed description and the accompanying drawings, in which:

FIG. 1 illustrates a cycling FMN-oxidoreductase-luciferase system where detection of glyphosate is via bioluminescence;

FIG. 2 illustrates an embodiment of a system for high-resolution single-photon imaging and quantitative bioluminescence in plant tissues constructed according to the present disclosure;

FIG. 3 illustrates in vivo glyphosate visualization in leaf cells of canola plants expressing GOX, where light emission (indicated by arrows) is only detected in chloroplasts of transgenic leaves after 15 min incubation in the cocktail mix;

FIG. 4 illustrates digital images obtained after linear unmixing using spectra collected for pollen autofluorescence and bioluminescence, where absence of an image on the bioluminescence channel (top right panel) indicates that no light emissionis detected that matched that particular spectrum;

FIG. 5 illustrates confocal images from wild-type (Ebony) and GOX expressing (RT73) canola leaf cells after incubation in a cocktail mixture without glyphosate (0 mM) or with 15 mM glyphosate;

FIG. 6 illustrates confocal images showing the presence of glyphosate (green) in leaf cells and leaf chloroplasts (red) from GOX expressing canola RT73 plants, incubated for 45 min in the cocktail mixture with 5 mM glyphosate;

FIG. 7 illustrates an increase in the amount of light detected (bioluminescence) with the increase of glyphosate concentration present in the cocktail mixture;

FIG. 8 illustrates profiles (A) for the glyphosate (bioluminescence signal; green) and chlorophyll (red, autofluorescence) obtained from a confocal image (B) of a canola leaf expressing GOX (RT73 plant) after 45 minute incubation in the reactioncocktail mixture containing 5 mM glyphosate;

FIG. 9 illustrates Light emission detected for wild-type canola leaf samples incubated in cocktail mixture for 45 minutes after selective removal of interfering nucleotides (NADPH and NADH);

FIG. 10 illustrates light emission detected for GOX expressing canola leaf samples incubated in cocktail mixture for 45 minutes after selective removal of interfering nucleotides (NADPH and NADH); and

FIG. 11 illustrates light emission detected for GOX expressing canola leaf samples incubated in cocktail mixture with 30 mM glyphosate for 45 minutes without (no treatment) and after (pre-treatment) selective removal of interfering nucleotides(NADPH and NADH).

The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.

DETAILED DESCRIPTION

Further areas of applicability and advantages will become apparent from the following description. It should be understood that the description and specific examples, while exemplifying various embodiments of the invention, are intended forpurposes of illustration and are not intended to limit the scope of the invention.

The present invention provides compositions, methods, and systems for spatially imaging glyphosate within plant tissue, including cells and organelles of plant tissue, and microorganisms. Plant tissue of interest may be sectioned and applied tomicroscope slides whereupon an enzyme cocktail is applied to the tissue to provide a bioluminescence reaction. Light detection and quantitation correlates with the amount of glyphosate within the plant tissue. Imaging may be used to ascertain thedistribution of glyphosate within the plant tissue at cellular and/or subcellular levels. Quantitative methods may be used to determine glyphosate concentrations relative to tissue volume.

In some embodiments, the present disclosure provides analytical imaging methods for the detection and quantitation of glyphosate in plant tissues. These methods may be based on enzymatic reactions that link glyphosate to luciferase withsubsequent light emission. These methods may include linking the generation of reaction products and (NADPH.sup.+ and H.sup.+) to a luciferase assay in a solution that can be applied to frozen sections of live tissues. The production of NADPH.sup.+ andH.sup.+ is obtained following the enzymatic conversion of glyphosate to aminomethylphosphonate (AMPA) and glyoxylate by the glyphosate oxidoreductase (GOX) enzyme, as shown in FIG. 1. Location of glyphosate may then be detected and quantified in realtime using fluorescence microscopy, including confocal, multispectral, and hyperspectral microscopy. Other microscopic imaging approaches, such as those utilizing quantum dots and other fluorescent labels or fluorophores, may also be employed asadditional tools for illuminating and detecting one or more chemical reaction sites.

With reference to FIG. 1, an embodiment of a cycling FMN-oxidoreductase-luciferase system is shown, where detection of glyphosate is via bioluminescence. The biochemical method is based on luminescence produced by luciferase, for examplebacterial luciferase derived from Photobacterium fischeri. Glyphosate is linked to a nicotinamide adenine dinucleotide phosphate redox system (NADP/NADPH+H.sup.+) through specific enzymes, and the redox system is connected to bacterial luciferase viaflavin oxidoreductase. Using this system, the amount of glyphosate can be linked quantitatively through the flux of linked enzyme reaction products to the amount of light generated. Glyphosate oxidoreductase (GOX), shown in FIG. 1, catalyzes theformation of AMPA and glyoxylate from glyphosate by converting the electron acceptor NADP.sup.+ to its reduced form, NADPH. Flavin oxidoreductase uses NADPH, H.sup.+, and flavin mononucleotide (FMN) to catalyze the formation of FMNH.sub.2 andNADP.sup.+. Luciferase catalyzes the bioluminescent oxidation of FMNH.sub.2 and a long-chain aliphatic aldehyde, such as decanal, to produce FMN, the corresponding long-chain fatty acid, and water. In this process, emission of light is proportional tothe initial glyphosate concentration.

In some embodiments, the present systems and methods may also be used to measure amount and distribution of pyruvate, lactate, ATP, and glucose within tissue, cells, organelles, and microorganisms. In addition, other examples of long chainaldehydes suitable for luciferase assays include aliphatic aldehydes such as heptanal, octanal, nonanal, undecanal, etc. In some embodiments, flavin oxidoreductase may be used. Other luciferase enzymes that may be used include click beetle, deep-seasquid, etc. that can result in yellow, red, green, and orange-emitting light reactions. In addition, there are other luciferin substrates (adenylate substrates) that can provide different color light emitters. Likewise, several luciferases mutants havebeen produced to give different light emitter colors. One or more different colored light emitters may be employed in a single cocktail for simultaneous detection of different analytes (e.g., glyphosate plus ATP, sucrose, lactate or other NADP(H)dependent reactions) by using combinations of luciferases and/or luciferase substrates. Simultaneous imaging assays may also be used to measure and/or localize energy metabolites (ATP, citrate, glucose, lactate, pyruvate, etc) and thus help elucidatethe effect of glyphosate in plant health and physiology. For example, this may be accomplished by using a cocktail that includes enzymes and/or substrates yielding two or more different light colors (e.g., green/red, green/yellow, etc).

Certain additional compounds may also be included in the present luciferase cocktail, such as coenzyme A, BSA, neutral detergents, and cytidine nucleotides (CTP, dCTP, dCDP, etc.). These compounds alone or in combination can lead to anamplification of the light signal and thereby enhance the signal of transient or non-abundant analytes of interest in plants, for example, by increasing sensitivity of the assay.

Bioluminescence generated by luciferase therefore allows indirect visualization of the spatial distribution of glyphosate in plant tissues by single and/or two-photon microscopy. The cycling FMN-oxidoreductase-luciferase system may be used tomeasure glyphosate within plant tissue sections, cells, or organelles.

In some embodiments, methods include contacting glyphosate-treated plant tissue sections with a luciferase enzyme and reagent cocktail where subsequent light emission is indicative of the presence and quantity of glyphosate. The associatedenzymatic reactions and resulting light emission produce a signal distribution across the cryosection with intensity proportional to the glyphosate concentration. The emitted light may be visualized through a microscope and/or an imagingmicroscope/scanner, and the respective image can be transferred to a computer for image analysis. In various embodiments, the emitted light may be measured by using one or more of a microscope, scanner, plate reader, spectrofluorometer, and ahyperspectral imager. A combination of one or more calibration procedures and a confocal microscope allows the quantitative calculation of regional glyphosate within tissue sections.

In some embodiments, the cycling FMN-oxidoreductase-luciferase system may be coupled to other target compounds, where a reaction involving the target compound (e.g., requiring a dehydrogenase) can be linked to the FMN-oxidoreductase-luciferasesystem. For example, various metabolites or proteins may be detected by these methods, where turnover of the metabolite or protein either directly or indirectly feeds into the NADP/NADPH+H.sup.+ and/or FMN/FMNH.sub.2 cycles depicted in FIG. 1.

In some embodiments, detection and quantitation of glyphosate may further include the following features. In order to obtain more consistent results in the determination of glyphosate for standard, control, and unknown tissue sections, cellularenzymes in the cryosection may be inactivated by heating at about 100.degree. C. for about 10 min. The light intensity of the bioluminescence reaction may be calibrated in absolute terms using homogenates of the heat-inactivated tissue which may beexposed to a solution with different glyphosate concentrations to provide a standard curve, for example. A combination of the calibration procedure and confocal microscope allows the quantitative calculation of regional glyphosate within the tissuesections in conjunction with measurements of the glyphosate control reactions.

Concentration values in .mu.moles/g with regard to tissue volume may be determined by comparing the bioluminescence intensity of the respective tissue sections with that of the standard sections. To prepare standard sections of about 20 .mu.m,tissue callus may be treated with different glyphosate concentrations in the range of 0-200 mM. The angle and positioning of the tissue sections for analysis may be set in a consistent and uniform manner in order to minimize error in measurements. Inthis way, the difference between concentrations of glyphosate will not come from different angles of tissue sections.

Cryosections may be adhered to the upper side of a cover glass that is laid upside down upon a glass slide with a rectangular casting-mold. The mold is filled with a liquid reaction solution containing an enzymatic cocktail (see Table 1) thatlinks glyphosate cleavage by glyphosate oxidoreductase (GOX) via the NADP+/NADPH+H.sup.+ redox system to the FMN-oxidoreductase-luciferase light reaction. Enzymes and coenzymes in the cocktail may be obtained from commercial suppliers. Spatialdistribution of bioluminescence within the tissue section is monitored following tissue contact with the enzymatic reaction mix using a microscope (e.g., Zeiss) and an imaging photon counting system. The photon intensity is integrated over about 90 sec,beginning about 10 sec after the light-emission by luciferase reaction is started. The casting mold carrying the tissue section under the microscope is held in a temperature controlled environment in order to make the kinetics of the enzyme reactionsmore reproducible. Digitized images of the glyphosate distributions are processed using image analysis software.

TABLE-US-00001 TABLE 1 Constituents of enzyme cocktail for the detection of glyphosate via bioluminescence. Reagent Concentration MOPS 100 mM Tricine 10 mM NADP.sup.+ (FAD) 75 mM MgC1.sub.2 10 mM GOX enzyme 42 mg/ml FMN 0.4 mM Decanal 8 mM1,4-dithiotreitol 0.5 mM Luciferase 0.13 Units/ml NAD(P)H-FMN Oxidoreductase 8 Units/ml

The enzyme cocktail allows for sensitive detection of even low amounts of glyphosate as well as assessment of its spatial distribution on a microscopic level in relation to the tissue structure.

In some embodiments, bioluminescence measurement includes the following methods and compositions. For bioluminescence imaging, coverglasses with adhered cryosections of standards, reference samples, or tissue are laid upside down on a metalslide with a casting mold. The mold is filled with the enzyme cocktail (Table 1). The tissue section is positioned in a way so that it is in close contact with the solution. This sandwich is transferred immediately to a temperature-controlled reactionchamber on the stage of an appropriate microscope (e.g., Axiophot, Zeiss, Oberkochen, Germany). After a 10 sec incubation time at 30.+-.1.degree. C., bioluminescence is collected for a defined time interval. Emission of light is detected with a 16-bitCCD camera coupled to an imaging photon counting system (e.g., C2400, Hamamatsu, Herrsching, Germany) that is connected to the microscope. The whole assembly is located within a light-tight black box to prevent registration of background photons fromthe environment.

In some embodiments, bioluminescence measurement includes the following methods and compositions. A cryosection of plant tissue is obtained and incubated for 10 min at 100.degree. C. to heat inactivate cellular enzymes. The cryosection isrefrozen and adhered to a glass slide. The glass slide is laid upside down so that the cryosection contacts a chamber containing frozen enzyme cocktail, such as that shown in Table 1. The temperature of the chamber is heated above the melting point ofthe enzyme cocktail to start the luciferase reaction. Spatial distribution of the bioluminescence intensity within the tissue section is measured directly using a microscope and imaging photon-counting system. Adjacent cyrosections may also be imagedusing visible light and/or various stains to help orient the bioluminescence images with respect to the plant tissue structure, including cellular structures and/or subcellular structures.

With reference to FIG. 2, an embodiment of an experimental setup constructed in accordance with the present disclosure is shown. The system provides high-resolution single-photon imaging and quantitative bioluminescence in plant tissues. Thetissue section 210 is applied to a cover glass 220 that is inverted to contact the tissue section 210 with an enzyme cocktail 230 contained within a temperature-controlled chamber 240. The tissue section 210 image is sent through an objective 250 of amicroscope 260 to a photon counting unit 270 that converts the image into a digital signal for receipt by an image processor 280. The image processor 280 is used to determine the position and intensity of the bioluminescent signal over a time interval.

In some embodiments, the experimental setup may include a confocal microscope, such as a Zeiss LSM510 META confocal microscope, which may be used with a two-photon laser, where the chamber is not thermostated.

The resulting bioluminescence images of plant tissue standards, controls, and unknown samples may be analyzed using Wasabi imaging software (Hamamatsu Photonic Systems Corp., Bridgewater, N.J.) and Origin data and graphic analysis software(OriginLab Corporation, Northampton, Mass.). Images of the spatial distribution of light intensities in tissue sections may be overlaid with other images, such as chlorophyll autofluorescence. Photoshop (Adobe Systems Incorporated, San Jose, Calif.,USA), ImageJ (National Institutes of Health, Bethesda, Md.), Excel (Microsoft, Redmond, Wash., USA) and other similar software may be used for quantitation and evaluation of bioluminescence images. In some embodiments, the glyphosate-dependentbioluminescence assay and the intensity of light may be dependent not just on the concentration within the section but also on the section thickness. Thus, it may be important to prepare and use cryosections of identical thickness throughout measurementand calibration.

Referring now to FIG. 3, bioluminescence images are shown that illustrate in vivo glyphosate visualization in leaf cells of canola plants expressing GOX. Panel (a) shows images of the Ebony cultivar of canola as wild-type plants and panel (b)shows images of transgenic RT73 canola expressing GOX. Light emission via bioluminescence, indicated by arrows in panel (b), is detected after 15 min incubation in the cocktail mix only in the chloroplasts of the transgenic plant leaves.

In some embodiments, glyphosate detection and quantitation methods may be applied to plant tissues that do not express glyphosate oxidoreductase (GOX). For example, GOX may be extracted and/or purified from a plant expressing the GOX enzyme orfrom a recombinant source. Addition of GOX to the enzyme cocktail can therefore extend the glyphosate detection method to plant samples without endogenous GOX. For example, enzyme cocktail including GOX may be used for spatial imaging and quantitationof glyphosate that is applied to any plant, for example, undesired plants such as weeds, in order to measure glyphosate amounts and distribution through the plant's tissue. GOX and/or the enzyme cocktail including GOX may be part of a kit to detect andquantify glyphosate in any plant, both in vivo and in vitro. These methods may also be coupled with other tools, markers, and probes and may be used to screen explants.

Evaluation and variation of methods for the spatial imaging and quantitation of glyphosate may include the following additional features. Glyphosate may be visualized in canola leaves expressing GOX following incubation in a cocktail stainingmix. Light emission is a result of glyphosate conversion to AMPA and glyoxylate by GOX. The bioluminescence is dependent on GOX activity and does not originate from a secondary source or an alternative reaction in the cells.

In order to establish that the origin of the light is dependent on the presence of glyphosate in the cells, the present methods and compositions are applied to pollen from RT73 canola plants instead of the leaves. Using enzyme cocktailcontaining no GOX, multi-photon image acquisition and analysis shows that no light emission is detected for RT73 pollen grains following incubation in the cocktail mix with and without glyphosate. Linear unmixing, using spectra previously collected,further confirms that the detected signal is originating from fluorescent compounds and not bioluminescence, as shown in FIG. 4. Since RT73 pollen grains do not express GOX, these results demonstrate that the indirect glyphosate detection method usingenzyme cocktail is not influenced by a secondary source or alternative reaction.

The effect of increasing concentrations of glyphosate on light emission may be evaluated using the following methods and compositions. Hand-made sections of RT73 (GOX expressing) and Ebony (wild-type) canola leaves are incubated in cocktailmixtures containing the following concentrations of glyphosate: 0, 2.5, 5, 10, 15, 20, and 30 mM. Incubation is performed directly on a slide in a drop of cocktail mix (about 20 to 100 .mu.L, or another volume that covers the tissue sample) and imagesare acquired from thereon; alternatively, the samples are incubated in wells (about 100-300 .mu.L, or any other volume that covers the sample) for about 45 min and then transferred to slides for image acquisition. Slides may be replaced by any supportthat allows light capture from any direction. Other time intervals for incubation and/or observation are tested, such as from about 5 min to 180 min. For RT73 samples incubated on slides, light emission is captured 5 to 10 min after incubation in thecocktail mixture for concentrations of glyphosate equal or above 10 mM; and after 30 min, for cocktail mixtures with 5 mM glyphosate. For samples incubated in wells for about 45 min prior to observation, light emission is detected for allconcentrations, increasing with the increase of glyphosate present in the cocktail mixture. For wild-type canola samples (Ebony), no change on light emission was detected for any of the samples, as shown in FIG. 5 and FIG. 6.

FIG. 5 shows confocal images from wild-type (Ebony) and GOX expressing (RT73) canola leaf cells after incubation in a cocktail mixture without glyphosate (0 mM) or with 15 mM glyphosate. Red fluorescence indicates the presence of chlorophyll inthe leaf chloroplasts, while green (bioluminescence) indicates the presence of glyphosate indirectly detected by the enzymatic reaction that links glyphosate oxidation by glyphosate oxidoreductase (GOX) to a cycling system withFMN-oxidoreductase-luciferase. No light emission (bioluminescence; green) is detected for Ebony leaf samples incubated in any of the tested cocktail mixtures and glyphosate concentrations. Light emission (bioluminescence; green) is detected for allRT73 samples incubated in cocktail mixtures containing 2.5, 5, 10, 15, 20, and 30 mM glyphosate.

FIG. 6 includes confocal images showing the presence of glyphosate (green) in leaf cells and leaf chloroplasts (red) from GOX expressing canola RT73 plants, incubated for 45 min in the cocktail mixture with 5 mM glyphosate.

Analyses include histograms, profiles, and spectra produced from images acquired on the confocal and lambda mode of a Zeiss LSM510 META Two-photon confocal microscope with the Zeiss LSM510 Image Examiner, but other instruments may be used tocapture and quantify the light emitted (bioluminescence). The data obtained using the Zeiss software is then transferred to a computer spreadsheet, such as Microsoft Excel, for further analysis. Results confirm that there is a glyphosate concentrationdependency relative to bioluminescence. Thus, under the tested conditions, the light emitted increases with increasing glyphosate concentration in the cocktail mixture; example data is shown in FIG. 7.

The light emitted from the sample is captured and visualized on both lambda and confocal modes. The profiles obtained using the confocal mode are produced using large areas of the focal plane, thus capturing profiles from regions whereglyphosate and GOX are not present that account, in the profile, for regions of background or very low light emissions, as shown in FIG. 8. Profiles and histograms can be produced for regions where emission is occurring thus avoiding a "dilutioneffect". Glyphosate is visualized in the chloroplasts and also in the cell cytoplasm. The amount of glyphosate visualized in a particular cell or sample may be affected by the diffusion of the mixture and/or thickness of the sample.

In some embodiments, selective removal of interfering nucleotides (e.g., NADPH to NADH) may be performed as follows. Canola leaf sections from plants expressing GOX (RT73) and wild-type plants (Ebony) are incubated with 20 .mu.L of 0.02 M HClcontaining 2 mM ascorbic acid, followed by addition of 90 .mu.L of 0.02 N HCl. After 20 min at RT, the sections are transferred to ice, neutralized with 125 .mu.L of 0.02 M NaOH and 90 .mu.L of 33 mM K.sub.2HPO.sub.4, pH 7.0. The sections are thenincubated (-NADPH) with enzyme cocktail mixture with 0, 2.5, 5, 10, 1, 20 and 30 mM glyphosate, and observed and analyzed as described. This treatment may selectively destroy the reduced nucleotides forms (NADPH/NADH) while stabilizing the oxidizedforms (NADP/NAD+). This can allow the linked reactions to proceed more efficiently in the forward direction (to the luciferase reaction) when NADP+ is included in the luciferase cocktail. Thus, interfering reduced nucleotides (NADPH/NADH) present inthe leaf samples may be eliminated and the provided reagent (NADP+) can allow the linked reaction to occur. In this case, NADP+ is provided in addition to the NADP+ formed and/or stabilized in the leaf samples by the acid treatment.

For wild-type canola leaves, there was no increase in the amount of light emitted (FIG. 9), whereas for GOX expressing canola leaves there was an increase in the amount of light emitted from the samples, which increased with the increase ofglyphosate concentration present in the cocktail mixture (FIG. 10). Selective removal of interfering nucleotides such as NADPH and NADH prior incubation of GOX expressing leaf samples in cocktail mixture containing 30 mM glyphosate led to an increase ofthe signal detected (bioluminescence) when compared to non-treated samples incubated under the same conditions, as shown in FIG. 11.

In some embodiments, glyphosate may be detected in the absence of endogenous GOX. Leaves from sensitive and resistant marestail plants (Conyza canadensis; also commonly known as horseweed) sprayed with glyphosate (Roundup.RTM.) are incubated ina cocktail mixture with 0 mM glyphosate and a volume of crude extract of GOX expressing canola leaves. Alternatively, the GOX that is used may be isolated and/or extracted from microorganisms. The disclosed procedures for signal detection and analysisas described may be used to image glyphosate in the marestail plant tissue.

Detection and quantitation of glyphosate in plant tissue may identify local distribution and translocation of the herbicide through plant tissue, including enzymes that breakdown glyphosate. In contrast to other methods, which employ techniquessuch as HPLC, the present methods use very small sample volumes and no chemical extraction procedures are required for glyphosate imaging and quantitation.

The present methods and compositions can be applied to detect and/or quantitate glyphosate in other samples besides plant tissue. For example, glyphosate may be visualized and/or quantified by light emission in various biological samplesincluding microorganisms, such as bacteria, algae, protozoa, and fungi, among others. As described herein with respect to plant tissue, the microorganism(s) is contacted with an enzyme cocktail, where the enzyme cocktail includes oxidized nicotinamideadenine dinucleotide phosphate (NADP+), glyphosate oxidoreductase (GOX), flavin mononucleotide (FMN), flavin oxidoreductase, a long-chain fatty aldehyde, and luciferase. Light emission from the microorganism(s) is measured, with light emissionproportional to glyphosate in the microorganism(s). In some cases, the microorganism may express glyphosate oxidoreductase (GOX) so that the enzyme cocktail may not need to include glyphosate oxidoreductase (GOX), as per plant tissue expressingglyphosate oxidoreductase (GOX). Also, as described herein with respect to plant tissue, cellular enzymes in the microorganism(s) may be inactivated by heating prior to the contacting and reduced nucleotides in the microorganism(s) may be selectivelyremoved by acid treatment prior to the contacting.

Glyphosate may further be visualized and/or quantified by light emission in other samples, including soil and water. For example, the light emission from the present methods and compositions can be used to measure the amount of glyphosate inthe sample. Comparison with a glyphosate standard curve, for example similar to that shown in FIG. 7, would allow determination of the amount of glyphosate in a water or soil sample. As described, an increase in the amount of light detected(bioluminescence) is observed with an increase in glyphosate concentration.

All literature and similar materials cited in this disclosure, including but not limited to, patents, patent applications, articles, books, treatises, and internet web pages, regardless of the format of such literature and similar materials, areexpressly incorporated by reference in their entirety for any purpose. In the event that one or more of the incorporated literature and similar materials differs from or contradicts this disclosure, including but not limited to defined terms, termusage, described techniques, or the like, this disclosure controls.

The description of the technology is merely exemplary in nature and, thus, variations that do not depart from the gist of the present invention are intended to be within the scope of the invention. Such variations are not to be regarded as adeparture from the spirit and scope of the invention.

* * * * *
 
 
  Recently Added Patents
Apparatus and method for providing vehicle data for testing product
Semiconductor device and method for manufacturing same
Battery comprising circuitry for charge and discharge control, and method of operating a battery
Local call local switching at handover
Charge pump circuit and power-supply method for dynamically adjusting output voltage
Cordless hand blender
Dynamically reconfigurable systolic array accelorators
  Randomly Featured Patents
Backlight unit and liquid crystal display device using the same
Needle sheath holder with seepage precluding engagement zones
Method and apparatus for measuring pH of low alkalinity solutions
Profiling method
Haptic feedback effects for control, knobs and other interface devices
Light directing structure for a connector
Method for comparing package EMI performance at multiple clock speeds
Spring probe-compliant pin connector
Context-relevant images
Laptop computer