Resources Contact Us Home
Browse by: INVENTOR PATENT HOLDER PATENT NUMBER DATE
 
 
Power amplifier for mobile communication system
6104247 Power amplifier for mobile communication system
Patent Drawings:Drawing: 6104247-2    Drawing: 6104247-3    Drawing: 6104247-4    
« 1 »

(3 images)

Inventor: Ha
Date Issued: August 15, 2000
Application: 09/316,987
Filed: May 24, 1999
Inventors: Ha; Tae-Young (Seoul, KR)
Assignee:
Primary Examiner: Lee; Benny
Assistant Examiner: Nguyen; Patricia T.
Attorney Or Agent: Dilworth & Barrese
U.S. Class: 330/277; 330/295; 330/302; 333/100
Field Of Search: 330/277; 330/295; 330/302; 333/100; 333/124
International Class: H03F 3/60
U.S Patent Documents: 5274341; 5793253; 5955926
Foreign Patent Documents:
Other References:









Abstract: A power amplifier for a radio communication system is provided which includes a divider for equally dividing a received signal into two signals, an amplifier for separately amplifying the divided signals with a same gain, and a combiner for combining the separately amplified signals into one output signal. The divider includes a first FET for equally dividing a signal received at a gate thereof into a signal being output at a drain thereof and a signal being output at a source thereof, a first inductor for coupling the drain of the first FET to a ground, a second inductor for coupling the source of the first FET to the ground, a first capacitor for coupling the drain of the first FET to an input of the first amplifier, and a second capacitor for coupling the source of the first FET to an input of the second amplifier. The amplifier includes at least one first amplifier for amplifying a signal output from the first capacitor, and at least one second amplifier for amplifying a signal output from the second capacitor. The combiner includes a second FET for combining a signal received at a drain thereof from the first amplifier and a signal received at a source thereof from the second amplifier, and outputting the combined signal at a gate thereof, a third inductor for coupling the drain of the second FET to the ground, a fourth inductor for coupling a source of the second FET to the ground, a third capacitor for coupling the drain of the second FET to an output of the first amplifier, and a fourth capacitor for coupling the source of the second FET to an output of the second amplifier.
Claim: What is claimed is:

1. A power amplifier for a radio communication system, comprising:

a first field effect transistor for equally dividing a signal received at a gate thereof into a signal being output at a drain thereof and a signal being output at a source thereof;

a first amplifier for amplifying the signal output from the drain of the first FET;

a second amplifier for amplifying the signal output from the source of the first FET; and

a second FET for combining a signal received at a drain thereof from the first amplifier and a signal received at a source thereof from the second amplifier, and outputting the combined signal at a gate thereof.

2. The power amplifier according to claim 1, further comprising:

a first inductor for coupling the drain of the first FET to a ground;

a second inductor for coupling the source of the first FET to the ground;

a first capacitor for coupling the drain of the first FET to an input of the first amplifier; and

a second capacitor for coupling the source of the first FET to an input of the second amplifier.

3. The power amplifier according to claim 2, further comprising:

a third inductor for coupling the drain of the second FET to the ground;

a fourth inductor for coupling the source of the second FET to the ground;

a third capacitor for coupling the drain of the second FET to an output of the first amplifier; and

a fourth capacitor for coupling the source of the second FET to an output of the second amplifier.

4. A power amplifier for a radio communication system, comprising:

a divider for equally dividing a received signal into two signals, said divider comprising:

a first FET for equally dividing a signal received at a gate thereof into a signal being output at a drain thereof and a signal being output at a source thereof,

first inductor for coupling the drain of the first FET to a ground,

a second inductor for coupling the source of the first FET to the ground,

a first capacitor for coupling the drain of the first FET to an input of the first amplifier, and

a second capacitor for coupling the drain of the first FET to an input of the second amplifier;

an amplifier for separately amplifying the divided signals with a same gain; and

a combiner for combining the separately amplified signals into one output signal.

5. The power amplifier according to claim 4, wherein the amplifier comprises:

at least one first amplifier for amplifying a signal output from the first capacitor; and

at least one second amplifier for amplifying a signal output from the second capacitor.

6. The power amplifier according to claim 5, wherein the combiner comprises:

a second FET for combining a signal received at a drain thereof from the first amplifier and a signal received at a source thereof from the second amplifier, and outputting the combined signal at a gate thereof;

a third inductor for coupling the drain of the second FET to the ground;

a fourth inductor for coupling a source of the second FET to the ground;

a third capacitor for coupling the drain of the second FET to an output of the first amplifier; and

a fourth capacitor for coupling the source of the second FET to an output of the second amplifier.
Description: BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to mobile communication systems, and in particular, to a power amplifier for a mobile communication system. More particularly, the present invention relates to a power amplifier for a mobile communicationsystem where the power amplifier has a power divider at an input end and a power combiner at an output end for improving linearity thereof.

2. Description of the Related Art

In a code division multiple access (CDMA) mobile communication system, a mobile station and a base station each have a power amplifier for amplifying a received low-power signal or a transmission signal to a desired power level. A typical poweramplifier for a CDMA mobile station or base station includes multiple amplifiers arranged in a cascaded design configuration having several stages. The overall performance characteristic of such a cascaded design configuration for the multipleamplifiers therefore depends mainly on the amplifier providing a final output signal, i.e., the final amplifier. Therefore, even though the amplifiers in the leading stage have a good characteristic, if the final amplifier has a poor characteristic, theoverall performance characteristic of the power amplifier is adversely affected.

Accordingly, the final amplifier is designed to increase linearity, i.e., to cause the final output signal of the power amplifier to be linearly proportional to an input signal of the power amplifier. To achieve such a result, there is generallyan increase in the amount of current consumed by the final amplifier which inevitably causes an increase in power consumption of the mobile station. The increase in power consumption leads to a decrease in a run-time (or life time) of a battery for themobile station. Accordingly, the base station in radio communication with the mobile station also experiences an increases in power consumption. Therefore, there is a demand for a power amplifier which reduces the current consumption while maintaininglinearity, even if the cascaded design configuration of multiple amplifiers is not used.

SUMMARY OF THE INVENTION

It is, therefore, an object of the present invention to provide a power amplifier for dividing a received signal, separately amplifying the divided signals, and thereafter combining the separately amplified signals.

It is another object of the present invention to provide a power amplifier having a power divider and a power combiner each including a field effect transistor having characteristics identical to a passive element.

To achieve the above objects, a power amplifier for a radio communication system includes a divider for equally dividing a received signal into two signals, an amplifier for separately amplifying the divided signals with a same gain, and acombiner for combining the separately amplified signals into one output signal.

The divider includes a first FET for equally dividing a signal received at a gate thereof into a signal being output at a drain thereof and a signal being output at a source thereof, a first inductor for coupling the drain of the first FET to aground, a second inductor for coupling the source of the first FET to the ground, a first capacitor for coupling the drain of the first FET to an input of the first amplifier, and a second capacitor for coupling the source of the first FET to an input ofthe second amplifier.

The amplifier includes at least one -first amplifier for amplifying a signal output from the first capacitor, and at least one second amplifier for amplifying a signal output from the second capacitor.

The combiner includes a second FET for combining a signal received at a drain thereof from the first amplifier and a signal received at a source thereof from the second amplifier, and outputting the combined signal at a gate thereof, a thirdinductor for coupling the drain of the second FET to the ground, a fourth inductor for coupling a source of the second FET to the ground, a third capacitor for coupling the drain of the second FET to an output of the first amplifier, and a fourthcapacitor for coupling the source of the second. FET to an output of the second amplifier.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating a power amplifier according an embodiment of the present invention;

FIG. 2 is a schematic diagram illustrating the power amplifier of FIG. 1; and

FIG. 3 is a diagram illustrating a field effect transistor of FIG. 2.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

A preferred embodiment of the present invention will be described herein below with reference to the accompanying drawings. In the following description, well known functions or constructions are not described in detail since they would obscurethe invention in unnecessary detail.

A power amplifier proposed by the present invention can reduce the current consumption while maintaining the linearity, even without using the cascade structure of multiple amplifiers. The proposed power amplifier is illustrated in FIG. 1.

Referring to FIG. 1, the power amplifier includes a power divider 110 located at an input end and a power combiner 130 located at an output end. The power divider 110 and the power combiner 130 are composed of passive elements, such astransmission lines, to increase linearity.

That is, the power divider 110 equally divides a signal received at an input terminal, and the equally divided signals are amplified by an amplifier 120. The amplified signals are then combined into one output signal by the power combiner 130.

When the power divider 110 and the power combiner 130 are manufactured with transmission lines designed to carry signals having a frequency band of, for example, 1-2 GHz, the power amplifier increases in size.

With reference to FIG. 2, there is illustrated a power amplifier according to the present invention. In FIG. 2, a field effect transistor (FET) Q1 in a power divider 110 equally divides an input signal received at an input node. Amplifiers210-216 in an amplifying part 120 amplify the signals divided by FET Q1. An FET Q2 in a power combiner 130 combines the signals output from the amplifiers 210-216. Inductors L1, L2 and L3 and capacitors C1 and C2 in the power divider 110 serve forimpedance matching and correcting of FET Q1. Similarly, inductors L4, L5 and L6 and capacitors C3 and C4 in the power combiner 130,serve for impedance matching and correcting of FET Q2.

More specifically, FET Q1 has a gate grounded via the inductor L1, a drain grounded via the inductor L2 and a source grounded via the inductor L3. Also, the gate is coupled to the input node, the drain is coupled to the amplifier 210 via thecapacitor C1 and the source is coupled to the amplifier 214 via the capacitor C2. An output of the amplifier 210 is coupled to an input of the amplifier 212; an output of which is coupled to a drain of FET Q2 via the capacitor C3. Similarly, an outputof the amplifier 214 is coupled to an input of the amplifier 216; an output of which is coupled to a source of FET Q2 via the capacitor C4. The drain and source of FET Q2 are grounded via the inductors L4 and L5, respectively. A gate; connected to anoutput node, of FET Q2 is grounded via the inductor L6. The power divider 110 and the power combiner 130 can be composed of FETs Q1 and Q2 because FETs Q1 and Q2 have an equivalent design configuration as shown by FIG. 3.

A description will now be made regarding the operation of the power divider 110 and the power combiner 130 according to the present invention. FETs Q1 and Q2 both have an equivalent design configuration, as noted above and as shown by FIG. 3. Referring to FIG. 3, a capacitor C5 is coupled between a drain D and a source S. A capacitor C6 is coupled between the drain D and a gate G. A capacitor C7, having the same capacitance as that of the capacitor C6, is coupled between the source S and thegate G. Further, an

internal resistor RI is coupled between the drain D and the source S.

FETs Q1 and Q2 having the equivalent design configuration serve as passive elements of the power amplifier when the gates are respectively grounded via inductors L1 and L6; the drains are respectively grounded via the inductors L2 and L4; and thesources are respectively grounded via the inductors L3 and L5. The internal resistors R1 in FETs Q1 and Q2 have a very high resistance. In addition, the capacitors C6 and C7 have the same capacitance, so that the drains and the sources of FETs Q1 andQ2 have the same structure when viewed into the gates of FETs Q1 and Q2.

Since the drain and the source of FET Q1 have the same structure, a signal input to the g at e of FET Q1 is equally distributed to the drain and source of FET Q1. The inductors L1, L2 and L3, and the capacitors C1 and C2 are used to match aninput impedance of FET Q1 to an output impedance thereof.

Moreover, the divided signal output from the drain of FET Q1 is amplified by the amplifiers 210 and 212, and the divided signal output from the source of FET Q1 is amplified by the amplifiers 214 and 216. The amplified signals are provided tothe drain and the source of FET Q2 in the power combiner 130. The signals input to the drain and the source of FET Q2 are combined at the gate. The inductors L4, L5 and L6, and the capacitors C3 and C4 are used-to match the input impedance of FET Q2 tothe output impedance thereof.

The elements C1, C2, L1, L2 and L3 for correcting the output signal divided by FET Q1 and the elements C3, C4, L4, L5 and L6 for correcting the signal combined by FET Q2 have a common phase shifter structure (see I. D. Robertson, "MMIC Design",chapter 7, Phase Shifter). Here, the capacitors C1, C2, C3 and C4 serve to cut off a DC voltage input.

As described above, in the power amplifier according to the present invention, the power divider and the power combiner are implemented using field effect transistors having an equivalent design configuration, thereby contributing to an improvedlinearity of the overall power amplifier. In addition, the field effect transistors used for the power divider and the power combiner consume relatively less current, thereby having no adverse influence over the overall power consumption of the system. It is contemplated, that implementing the power amplifier of the present invention with an MMIC (Monolithic Microwave Integrated Circuit) may contribute to miniaturization, lightness and mass-production of the power amplifier, and in turn the mobilestation, and the base station.

While the invention has been shown and described with reference to a certain preferred embodiment thereof, it will be understood by those skilled in the art that various changes in from and details may be made therein without departing from thespirit and scope of the invention as defined by the appended claims.

* * * * *
 
 
  Recently Added Patents
Magnetoresistive element and manufacturing method of the same
Method and system for modifying satellite radio program subscriptions in a mobile vehicle
Wire catalyst for hydrogenation/dehydrogenation reaction and manufacturing method therefor
System and method for conditionally sending a request for data to a home node
Organic electroluminescence element
Home appreciation participation notes
Data processing system, data processing method, and image forming apparatus
  Randomly Featured Patents
Hydrocracking hydrocarbons over tri-metallic catalyst
Prostheses and methods for replacement of natural facet joints with artificial facet joint surfaces
Microelectronic fabrication having microelectronic capacitor structure fabricated therein
Protocol agnostic web listener
Rodent habitat
Soluble form osmotic dose delivery system
Image forming system with original feeding apparatus
Method for the synthesis of oligonucleotide derivatives
Muffler
Crystalline tiotropium bromide monohydrate, processes for the preparation thereof, and pharmaceutical compositions