Resources Contact Us Home
Process for the preparation of orthophosphorous acid and phosphine
4207300 Process for the preparation of orthophosphorous acid and phosphine
Patent Drawings:

Inventor: Kestner, et al.
Date Issued: June 10, 1980
Application: 05/970,846
Filed: December 18, 1978
Inventors: Kestner; Mark O. (Mendham, NJ)
Teliszczak; Pamela J. (Carpentersville, IL)
Assignee: Borg-Warner Corporation (Chicago, IL)
Primary Examiner: Vertiz; O. R.
Assistant Examiner: Roy; Thomas W.
Attorney Or Agent: Schlott; Richard J.
U.S. Class: 423/299; 423/316
Field Of Search: 423/316; 423/299; 423/304
International Class:
U.S Patent Documents: 3437438; 3437439; 3437440; 3528772; 3532461; 3632311; 3679374
Foreign Patent Documents:
Other References: Richardson, J. Chem. Soc. (London), vol. 51 (1887), pp. 801-806..
Jacobson, Encyclopedia of Chemical Reactions, vol. 5 (1953), p. 364..
Mellor, Comprehensive Treatise on Inorganic & Theoretical Chemistry, vol. 8 (1928), pp. 901-902..

Abstract: The direct reaction of elemental phosphorus acid catalyzed by hydroiodic acid produces orthophosphorus acid free of orthophosphoric acid and phosphine free of diphosphine.
Claim: We claim:

1. A process for preparing orthophosphorous acid and phosphine comprising

adding elemental phosphorus to a reaction vessel containing a mixture consisting of water, a C.sub.1 -C.sub.6 aliphatic carboxylic acid and hydroiodic acid at a temperature between about and C. under an inert gasatmosphere;

collecting phosphine from the reaction vessel; and

distilling aqueous hydroiodic acid, said carboxylic acid and water from the reaction vessel.

2. The process of claim 1 wherein said carboxylic acid is acetic acid.

3. The process of claim 1 wherein said elemental phosphorus is charged at a rate such that the ratio of hydroiodic acid to elemental phosphorus is maintained at a value greater than 6:1.

4. A process for the preparation of orthophosphorus acid and phosphine consisting of combining acetic acid, aqueous hydroiodic acid and elemental phosphorus at a temperature between about and C., collecting phosphineand stripping the acetic acid, hydroiodic acid and water from the orthophosphorous acid.

5. The process of claim 4 wherein the hydroiodic acid and elemental phosphorus are in a ratio greater than about 6:1.

This invention relates to a method for making orthophosphorous acid and phosphine. More particularly, this invention is a method for the preparation of orthophosphorous acid and phosphine from elemental phosphorus and water. Still moreparticularly, this invention is a method for the preparation of orthophosphorus acid and phosphine by way of a hydroiodic acid-catalyzed reaction of elemental phosphorus with water.

Methods for making orthophosphorus acid, H.sub.3 PO.sub.3, have long been known. More recently, practical methods for preparing orthophosphorous acid have been developed, including a process whereby the trivalent oxide is formed by a controlledair oxidation of elemental phosphorous and subsequently hydrolyzed, as is disclosed in U.S. Pat. No. 3,528,772. Such processes produce a mixture of acids containing orthophosphorous acid together with as much as 25% orthophosphoric acid, H.sub.3PO.sub.4, or more. Separating the orthophosphorous acid from the mixture in a highly purified form thus requires additional process steps such as those disclosed in U.S. Pat. Nos. 3,632,311 and 3,679,374.

Alternative prior art methods for obtaining orthophosphorous acid include the hydrolysis of a phosphorous trihalide such as phosphorus triiodide (PI.sub.3) with water to produce orthophosphorous acid and the corresponding hydrogen halide. Animproved process employing this scheme is disclosed in U.S. Pat. No. 3,437,439, and includes the steps of in situ generation of PI.sub.3 from phosphorous and iodine in the presence of an oxidizing agent and a solvent, followed by hydrolysis to formorthophosphorous acid. As with the air oxidation processes previously discussed, this process forms a mixture containing a substantial proportion of orthophosphoric acid which must then be subjected to a separation process step if pure orthophosphorousacid is desired.


In the process of this invention, orthophosphorous acid free of orthophosphoric acid is produced in high yield by the reaction of elemental phosphorus with water in the presence of hydroiodic acid. More particularly, elemental phosphorus readilyreacts with water in the presence of hydroiodic acid and, optionally, an organic solvent, by a disproportionation to produce equimolar amounts of phosphine (PH.sub.3) and orthophosphorous acid, apparently according to the equation:

Phosphine, being a gas under the reaction conditions, evolves from the reaction mixture and may be collected for other uses. The reaction mixture, after distillation to remove hydroiodic acid, water and any solvent present, consists of a clearviscous orthophosphorous acid containing no detectable amounts of orthophosphoric acid or other acids of phosphorus.


The common forms of elemental phosphorous include the clear or whitish-yellow waxy solid melting at known as white phosphorus, and a red, high melting, less reactive substance known as red phosphorus. For the purposes of the processof this invention, only the white phosphorus is useful. The elemental phosphorus may be employed as a finely divided solid or as a melt, or it may be dissolved or dispersed in an inert organic solvent.

Elemental phosphorus is substantially insoluble in water and does not react with water at any appreciable rate. In the presence of an acid and in particular in the presence of aqueous hydroiodic acid, elemental phosphorus appears to undergodisproportionation to form phosphine and orthophosphorus acid. The reaction proceeds best at elevated temperatures in the range of to C., and appears to require that hydroiodic acid be present in a ratio greater than 6 moles ofhydrogen iodide (HI) for each phosphorus molecule (P.sub.4). At ratios below about 6:1, some of the white elemental phosphorus is converted to insoluble and inert red phosphorus, lowering the overall yield and contaminating the final product.

Hydroiodic acid forms a constant boiling azeotrope with water containing 57% HI which boils at C. The process of this invention may thus be conveniently carried out by adding elemental phosphorus, in a continuous stream orincrementally, to a pot containing refluxing 57% aqueous hydroiodic acid and replenishing the water as it is consumed or lost through evaporation to maintain the boiling temperature at or below C. The reaction may be carried out in moredilute hydroiodic acid solutions if desired, and at any convenient temperature in the range of to C., however, at temperatures above about C., phosphonium iodide, PH.sub.4 I, sublimes from the reaction mixture,leading to a substantial reduction in the concentration of hydroiodic acid.

It is absolutely essential that the reaction be carried out in an inert gas atmosphere. Elemental phosphorus is spontaneously flammable in moist air, and the phosphine produced is flammable and forms potentially explosive mixtures with air oroxygen. For reasons of safety, the reaction vessel will thus be purged with an inert gas such as nitrogen or argon and a slight positive pressure of inert gas will preferably be maintained throughout the reaction period to prevent air from entering thevessel.

An inert organic solvent for the elemental phosphorus may optionally be included to aid in dispersing the phosphorus. The solvents useful for the purposes of this invention will be inert organic liquids which boil at a temperature within orslightly above the preferred temperature range and which may be readily distilled from the pot mixture at the end of the reaction period, including, for example, anhydrous, C.sub.1 to C.sub.6 aliphatic carboxylic acids. The solvent may be employeddirectly in the reaction mixture with the aqueous hydroiodic acid, or alternatively the elemental phosphorus may be dispersed in the solvent and added therewith in a steady stream. Because of its stability, convenient boiling temperature of C. and ready availability, acetic acid will be preferred for these purposes. The proportion of solvent employed is not critical; when added directly to the reaction mixture, approximately equal volumes of the solvent and aqueous hydroiodic acid may beconveniently employed.

The products of the reaction are orthophosphorous acid, which remains in the reaction mass, and gaseous phosphine which is evolved and may be conducted out of the reaction vessel, optionally water-scrubbed to remove HI, then collected by anyconvenient method such as cold trapping and gas-liquid displacement. Phosphine is both flammable and highly-toxic, and precautions must be taken to prevent its escape into the air and to ensure that no exposure to phosphine can occur.

Phosphine is commercially useful as a synthesis intermediate. Alternatively, phosphine may be readily oxidized to form phosphoric acid. Prior art methods for the preparation of phosphine generally produce phosphine contaminated with significantamounts of diphosphine, P.sub.2 H.sub.4 which is considerably more flammable and potentially more of an explosion hazard than phosphine. Surprisingly, the instant process results in very pure phosphine containing no detectable amounts of diphosphine. The process of this invention thus also provides a very practical and convenient method for the production of very pure phosphine.

The reaction vessel, after the addition of phosphorus is complete and the evolution of phosphine has ceased, contains orthophosphorous acid and aqueous hydroiodic acid, together with the solvent, if employed. The mixture is then distilled tostrip off the hydroiodic acid as the azeotrope which may be re-used directly. The pot mixture after distillation contains only clear viscous orthophosphorus acid with no other acids of phosphorus such as orthophosphoric acid. The mass is readilycrystallized if desired.

The process of this invention may be carried out either as a batch or continuous flow process. In a continuous process, molten phosphorous would be continuously added under an inert atmosphere to the pot mixture of 57% aqueous hydroiodic acidand solvent heated to a temperature of C. Phosphine would be collected as it evolved, and pot mixture would be continuously removed to a second heated vessel and stripped of solvent and hydroiodic acid azeotrope. The azeotrope would bereturned to the reaction vessel.

The process of this invention will be better understood by consideration of the following Example:


To a 0.5 l round bottom flask fitted with a stirrer, a reflux condenser and a thermometer were added 0.15 l of glacial acetic acid and 0.118 l of 57% aqueous hydroiodic acid. The mixture was slowly stirred, purged with nitrogen, and heated C. Elemental phosphorus (105 g.) was added incrementally over a period of 30 days, and water was periodically added to maintain the boiling temperature of the reaction mass below C.

As phosphine evolved, it was passed through a water-filled gas scrubber, then collected by trapping in a sodium hypochlorite solution. The total phosphine generated amounted to 51 g (89% yield). The gas stream was completely free of diphosphine(P.sub.2 H.sub.4).

The pot mixture was fractionally distilled to remove the acetic acid and hydroiodic acid azeotrope. The pot residue, amounting to 105 g (76.6% yield) was a clear viscous liquid. Chromatographic analysis showed this product to be H.sub.3PO.sub.3, with no detectable trace of H.sub.3 PO.sub.4 or other phosphorus acids.

The invention will thus be seen to be a method for the preparation of orthophophorus acid and phosphine comprising the steps of adding elemental white phosphorus to aqueous hydroiodic acid, optimally in the presence of a solvent, at a reactiontemperature of about to C., collecting phosphine as it is evolved, stripping hydroiodic acid, water and any solvent from the reaction mixture, thereby providing orthophosphorous acid.

* * * * *
  Recently Added Patents
Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
Location estimation of wireless terminals through pattern matching of deduced signal strengths
Control service for relational data management
Differentiated PSIP table update interval technology
Check weigher comprising of a rotating weighing chute with an accumulating and a discharge position that calculates flow rate by measuring weight accumulated during a predetermined time interv
Method for detection and characterization of a microorganism in a sample using time-dependent intrinsic fluorescence measurements
Build process management system
  Randomly Featured Patents
Power-on detector and method thereof
Method and apparatus for preparing samples for analysis
Arrangement and method for detecting sequential processing effects in manufacturing using predetermined sequences within runs
Differential fluid pressure switch
External toothed wheel pump comprising a relieving pocket
Bias system and method
Method for operating a tissue processor, and tissue processor
Livestock feed mixer
Method and apparatus for performing semiconductor memory operations