Resources Contact Us Home
Browse by: INVENTOR PATENT HOLDER PATENT NUMBER DATE
 
 
Inventor:
Casady; Jeffrey B.
Address:
Starkville, MS
No. of patents:
6
Patents:












Patent Number Title Of Patent Date Issued
7432171 Silicon carbide and related wide-bandgap transistors on semi-insulating epitaxy for high-speed, October 7, 2008
A silicon carbide semi-insulating epitaxy layer is used to create power devices and integrated circuits having significant performance advantages over conventional devices. A silicon carbide semi-insulating layer is formed on a substrate, such as a conducting substrate, and one or more
7242040 Lateral trench field-effect transistors in wide bandgap semiconductor materials, methods of maki July 10, 2007
A junction field effect transistor is described. The transistor is made from a wide bandgap semiconductor material. The device comprises source, channel, drift and drain semiconductor layers, as well as p-type implanted or Schottky gate regions. The source, channel, drift and drain l
7119380 Lateral trench field-effect transistors in wide bandgap semiconductor materials, methods of maki October 10, 2006
A junction field effect transistor is described. The transistor is made from a wide bandgap semiconductor material. The device comprises source, channel, drift and drain semiconductor layers, as well as p-type implanted or Schottky gate regions. The source, channel, drift and drain l
7009209 Silicon carbide and related wide-bandgap transistors on semi-insulating epitaxy for high-speed, March 7, 2006
A silicon carbide semi-insulating epitaxy layer is used to create power devices and integrated circuits having significant performance advantages over conventional devices. A silicon carbide semi-insulating layer is formed on a substrate, such as a conducting substrate, and one or more
6767783 Self-aligned transistor and diode topologies in silicon carbide through the use of selective epi July 27, 2004
A method of making vertical diodes and transistors in SiC is provided. The method according to the invention uses a mask (e.g., a mask that has been previously used for etching features into the device) for selective epitaxial growth or selective ion implantation. In this manner, the gat
6410396 Silicon carbide: germanium (SiC:Ge) heterojunction bipolar transistor; a new semiconductor trans June 25, 2002
Devices and methods for fabricating wholly silicon carbide heterojunction bipolar transistors (HBTs) using germanium base doping to produce suitable emitter/base heterojunctions. In one variation, all device layers are are grown epitaxially and the heterojunction is created by introducin










 
 
  Recently Added Patents
Functional component compensation reconfiguration system and method
Systems and methods for implementing pressure sensitive keyboards
Authentication platform and related method of operation
Method and device for monitoring and analyzing signals
Image recording device, image recording method, and computer program product that adds a fluorescent-whitening-agent onto a recording sheet
Nanofibers containing latent reactive groups
Cycloalkylamine substituted isoquinoline derivatives
  Randomly Featured Patents
Power management system having charging control unit and power switching control unit
Pool fountain
Purinone derivatives which have bronchodilator, vasodilator and anti-allergic activities
Front surface for dog maintenance indicator
Electronic control circuit for a powered appliance drawer
Composite skate boot and method of making the same
Ceramics honeycomb structural body and method of manufacturing the structural body
Shield for a helmet
Bottom portion housing of a mobile terminal
Texturized, combined polyester multifilament yarn and process for producing same